6 Multilevel CFA Models for Interchangeable Raters
Models of Section 6.2.2
Basic CTIM model with general trait factors
R Code
bCTIM <- '
level: 1
r_flone =~ Flon1 + Flon2 + Flon3
r_fflou =~ FFlou1 + FFlou2
level: 2
flone =~ Flon1 + Flon2 + Flon3
flou =~ FFlou1 + FFlou2
Flon1~~0*Flon1
Flon2~~0*Flon2
Flon3~~0*Flon3
FFlou1~~0*FFlou1
FFlou2~~0*FFlou2'
fit <- sem(model = bCTIM, data = chapter_6, estimator="mlr",
cluster = "Target")
summary(fit, fit.measures=T, standardized=T)
MPlus Code
Basic CTIM model with general trait factors and indicator-specific residual factors
R Code
bCTIMIS <- '
# Level 1
# Trait-specific rater (method) factors R_j
# Loneliness (R_1)
Level: 1
r_flone =~ 1*Flon1 + Flon2 + Flon3
# Flourishing (R_2)
r_fflou =~ 1*FFlou1 + FFlou2
# Level 2
# General trait factors T_j
# Loneliness (T_1)
Level: 2
flone =~ 1*Flon1 + Flon2 + Flon3
# Flourishing (T_2)
flou =~ 1*FFlou1 + FFlou2
# T_2
# Indicator-specific factors
I2_flon =~ Flon2
I3_flon =~ Flon3
I2_flou =~ FFlou2
flone ~~ 0*I2_flon + 0*I3_flon + 0*I2_flou
flou ~~ 0*I2_flon + 0*I3_flon + 0*I2_flou
# Level-2 residual variances fixed to zero
Flon1~~0*Flon1
Flon2~~0*Flon2
Flon3~~0*Flon3
FFlou1~~0*FFlou1
FFlou2~~0*FFlou2
'
fit <- sem(model = bCTIMIS, data = chapter_6, estimator="mlr",
cluster = "Target")
summary(fit, fit.measures=T, standardized=T)
MPlus Code
CTIM model with indicator-specific trait factors
R Code
CTIMIT <- '
# Level 1
# Trait-specific rater (method) factors R_j
# Loneliness (R_1)
Level: 1
r_flone =~ 1*Flon1 + .con1*Flon2 + .con2*Flon3
# Flourishing (R_2)
r_fflou =~ 1*FFlou1 + .con3*FFlou2
# Level 2
# Indicator-specific trait factors T_ij
# Loneliness (T_i1)
Level: 2
flone1 =~ 1*Flon1
flone2 =~ 1*Flon2
flone3 =~ 1*Flon3
# Flourishing (T_i2)
flou1 =~ 1*FFlou1
flou2 =~ 1*FFlou2
# Level-2 residual variances fixed to zero
Flon1~~0*Flon1
Flon2~~0*Flon2
Flon3~~0*Flon3
FFlou1~~0*FFlou1
FFlou2~~0*FFlou2
'
fit <- sem(model = CTIMIT, data = chapter_6, estimator="mlr",
cluster = "Target")
summary(fit, fit.measures=T, standardized=T)
MPlus Code